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1. Introduction 
 

INCA is a MATLAB-based software package for isotopomer network modeling 
and metabolic flux analysis (MFA). The software can simulate both steady-state 
and transient isotope labeling experiments using the elementary metabolite unit 
(EMU) method [1,2]. It can also estimate pathway fluxes based on extracellular 
flux measurements, pool size measurements, and/or mass isotopomer 
measurements supplied to the program. The software can perform a variety of 
statistical tests to determine goodness-of-fit, to compute parameter confidence 
intervals (i.e., uncertainties), and to assess model identifiability. It can also 
perform constraint-based analysis of metabolic networks (e.g., flux balance 
analysis, flux coupling analysis, etc.) and optimize the design of isotope labeling 
experiments using computational search algorithms. 
 
The software provides a framework for comprehensive analysis of metabolic 
networks using mass balances and isotopomer balances. The generation of 
balance equations and their computational solution is completely automated and 
can be performed on networks of arbitrary complexity. The graphical user 
interface (GUI) allows the user to input reaction information and experimental 
data in a simple text format, while offering a variety of powerful analysis tools to 
design and interpret isotope labeling experiments. All INCA data objects can be 
loaded and manipulated from the MATLAB command line, and the driver 
routines can be called directly from the command line or invoked within custom 
MATLAB scripts. INCA also offers built-in parallelization capabilities for running 
certain functions within a distributed computing environment. 
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2. System Requirements 
 

Computer with MATLAB plus Statistics and Optimization toolboxes installed.  
 
Parallel computations require either of the following: 
1) A cluster or multiprocessor environment with 

a. Condor job scheduler 
b. MATLAB and MATLAB Compiler toolbox installed on frontend node 

(used to run INCA and to compile the serve function for distribution 
to compute nodes) 

c. Compute node access to the MATLAB Compiler Runtime (MCR) 
library 

d. Compute node access to a shared directory where all input/output 
files are saved/read by the frontend node (Note: directory name must 
not contain spaces!) 

2) The MATLAB Parallel Computing toolbox and Distributed Computing Server 
(currently untested).  
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3. Installation and Configuration 
 

Instructions for downloading INCA are provided at the website 
http://mfa.vueinnovations.com/licensing. Unpack the INCA program files into a 
directory that can be readily accessed by MATLAB. 

  

http://mfa.vueinnovations.com/licensing
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4. Getting Started 
 

Begin a new MATLAB session.  Change the MATLAB working directory to the 
INCA root directory.  Type “inca” at the MATLAB command prompt and press 
enter.  This will launch INCA and bring up the Edit network screen (Figure 1). 
 

 
Figure 1. Edit network screen. 
 
Existing networks can be loaded by selecting File  Open Model and specifying 
the location of the saved file.  New networks can also be entered manually, which 
will be discussed in Section 5. Defining the Model. 

4.1.  Menu functions 
 

The main menu at the top of the INCA figure window enables the user to 
save/load program files, to adjust program options, and to access program 
documentation. Each menu item is described in detail below. 

 
File  

New: Clears all program inputs/outputs and creates a new INCA model. 
 
Open Model: Loads a previously saved INCA network model. 
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Open Simulation: Loads a previously saved tracer simulation along with its 
associated network model. (See Section 8 to learn how to generate a tracer 
simulation.) 
 
Open Flux Map: Loads a previously saved flux map along with its associated 
network model and tracer simulation. (See Section 9 to learn how to generate 
a flux map.) 
 
Import Experiments: Imports experimental datasets from a previously 
saved model into the currently open model.  
 
Save Model as: Saves the currently open INCA network model. 
 
Save Simulation as: Saves the current tracer simulation and network model. 
 
Save Flux Map as: Saves the current flux map, network model, and tracer 
simulation. 
 
Export Model as FluxML: Writes the currently open INCA network model to 
a 13CFLUX2 readable FluxML file. Note: This feature is currently 
experimental, and some aspects of the conversion need to be manually 
entered. In particular, reactions with >2 educts are not automatically split 
into bimolecular reactions as required by 13CFLUX2. Also, natural isotope 
abundance is not included in the specification of input pools. 
 
Export Model to OpenFLUX: writes the currently open INCA network model 
to an OpenFLUX readable Excel file. Note: This feature is currently 
experimental, and some aspects of the conversion need to be manually 
entered. In particular, reactions with >2 educts are not automatically split 
into bimolecular reactions. Also, flux measurements are not specified in the 
Excel file. 
 
Exit INCA: Exits the program 

 
Options  

Simulate natural abundance of labeled atoms: When checked, INCA will 
simulate the natural isotope abundance of all labeled atoms included in the 
measured mass isotopomer distributions (See Section 6.3). This box should 
be checked when the mass isotopomer data has not been previously 
corrected for natural isotope abundance of labeled atoms, and INCA should 
simulate the natural isotope contribution when performing flux estimations. 
 
Simulate natural abundance of unlabeled atoms: When checked, INCA 
will simulate the natural isotope abundance of all unlabeled atoms included 
in the measured mass isotopomer distrbutions (See Section 6.3). These are 
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typically atoms introduced by derivatization or heteroatoms that cannot 
become labeled by the tracer. If the mass isotopomer data has not been 
previously corrected for natural abundance of unlabeled atoms, this box 
should be checked to simulate the natural isotope contribution of these 
atoms. 
 
Show corrected MS data: When checked, INCA will correct experimental 
mass isotopomer data for natural abundance in displayed plots and tables 
(See Section 6.3). This only affects the data presentation and does not impact 
the flux estimation procedure. 
 
Simulate sensitivities: When checked, INCA will calculate parameter 
sensitivities when performing tracer simulations. This may slow down the 
simulation but is required for subsequent Identifiability analysis (See 
Section 8.3).   
 
Simulate steady-state labeling: When checked, INCA will apply steady-
state isotopomer balances and will use isotopically stationary MFA for flux 
estimation. When unchecked, INCA will apply transient isotopomer balances 
and will use isotopically nonstationary MFA (INST-MFA) to estimate fluxes 
and pool sizes. Note: Some INCA features are only applicable to INST-MFA and 
will be marked as “INST-MFA only” in the remainder of this document. 
 
Nonsteady-state simulation parameters: Selecting this menu item will 
open a dialog box where several options can be set to control the integration 
of transient isotopomer balance equations (See Section 8.2). (INST-MFA 
only) 
 
Run in parallel using Condor: When checked, INCA will distribute parallel 
jobs to compute nodes using the Condor job scheduler. This will affect the 
computation time required for flux estimation, parameter continuation, and 
Monte Carlo analysis.  
 
Condor settings: Selecting this menu item will open a dialog box where the 
location of files required for parallelization can be specified to Condor (See 
Appendix E).  
 
Use random initial guess for flux estimation: When checked, INCA will 
randomize the initial guess used for flux estimation.  
 
Optimization parameters: Selecting this menu item will open a dialog box 
where several options can be set to control the search algorithm used for flux 
estimation (See Section 9.1). 
 
Confidence interval parameters: Selecting this menu item will open a 
dialog box where several options can be set to control the calculation of 
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confidence intervals using parameter continuation or Monte Carlo analysis 
(See Section 9.3). 
 
Experiment design parameters: Selecting this menu item will open a dialog 
box where options can be set to control the search algorithm used for tracer 
optimization (See Section 10). 
 

 
Help  

User Manual: Opens this document in a PDF reader. 
 
Function Index: Opens an HTML file with links to help documentation on all 
INCA functions. This is a useful reference guide when calling INCA functions 
directly from the MATLAB command line or for developing custom scripts 
that invoke INCA function calls. 
 
About: Displays program version and copyright information. 

4.2. Toolbar functions 
 

Underneath the main menu is a primary toolbar that enables the user to navigate 
between different program screens. The icons to the left of the vertical divider 
link to input screens where the user can set up the network model and supply 
experimental data to the program. The icons to the right of the divider link to 
output screens where the user can perform various analyses and view results. 
When selecting the Edit experiments, Tracer simulation, or Flux estimation 
icon using the primary toolbar, a secondary toolbar appears that enables the 
user to navigate between different subscreens of the selected primary toolbar 
function. Each toolbar icon is explained further below. 

 
Primary toolbar 

 
 
1. Edit network (See Section 5.1) 
2. Edit reactions (See Section 5.2) 
3. Edit nodes (See Section 5.3) 
4. Edit metabolites (See Section 5.4) 
5. Edit experiments (See Section 6) 

 
Edit experiments secondary toolbar 

 
 



 10 

A. Edit flux measurements (See Section 6.2) 
B. Edit pool size measurements (INST-MFA only) (See Section 6.2) 
C. Edit MS measurements (See Section 6.3) 
D. Edit tracers (See Section 6.4) 

 
6. Constraint-based analysis (See Section 7) 
7. Tracer simulation (See Section 8) 

 
Tracer simulation secondary toolbar 

 
 
A. Simulate labeling (See Section 8.1) 
B. Identifiability analysis (See Section 8.3) 
 

8. Flux estimation 
 
Flux estimation secondary toolbar 

 
 
A. Optimize parameters (See Sections 9.1-9.3) 
B. Assess goodness-of-fit (See Section 9.2) 
C. Identifiability analysis (See Section 9.4) 
 

9. Tracer optimization (See Section 10) 
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5. Defining the Model 

5.1. Building a new network 

To define a new network, navigate to the Edit network screen by clicking the  
icon on the primary toolbar.  Network reactions can be manually entered in the 
Enter network reactions panel (Figure 1a) in the following format: 
 

A (abc) -> B (ab) + C (c) 
 
The uppercase letters represent the metabolite nodes, while the lowercase 
letters in parentheses represent the atom transitions. (Note: It is not necessary 
to follow this convention of using uppercase for metabolites and lowercase for 
atom transitions. The parentheses delimit the start and end of each atom 
transition. Any alphabetic, numeric, or underscore character comprising the 
regular expression [a-zA-Z_0-9] can be included in the metabolite names and 
atom transitions.) Irreversible reactions are denoted by a ‘->’ or ‘=>’ arrow and 
reversible reactions are denoted by a ‘<->’ or ‘<=>’ arrow.  Multiple reactions are 
separated by carriage returns or by placing a semicolon at the end of each 
reaction equation. A text description of the network model can be typed into the 
lower-left panel marked Enter network description (optional). When all 
reactions have been typed into the text box, click the Enter button to build the 
network. 
 
Metabolites associated with multiple subcellular compartments can be specified 
by placing a dot separator between the metabolite name and compartment 
name, as follows: 
 

A.c (abc) -> A.m (abc) 
 
where, for example, ‘.c’ designates the cytosolic compartment and ‘.m’ designates 
the mitochondrial compartment.  
 
Stoichiometric coefficients other than 1 can be specified by using the ‘*’ symbol 
to represent multiplication, as follows: 
 

2*A (abc) -> B (cbaabc) 
 
Note that each atom position on the product side of the equation must map to a 
unique position on the educt side of the equation. Mapping a product atom to 
more than one educt atom positions, or to a missing position, will result in an 
error. Furthermore, atom mappings for all reversible reactions must be unique 
in both directions (i.e., must possess one-to-one correspondence).  It is also 
possible to separate reaction terms with stoichiometric coefficients 1 into 
multiple terms, as follows: 
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A (abc) + A (def) -> B (cbadef) 
 
In some cases, this is necessary to avoid ambiguity when specifying the 
associated atom transitions.  
 
When parsing a reaction with the preceding syntax, the program will name the 
atoms of each metabolite as ‘1’, ‘2’, ‘3’, etc. in the order they are specified in the 
metabolite’s atom transitions. It is therefore important that the atom transitions 
are the same length and that atoms are specified in the same order each time a 
given metabolite appears in the network. An alternative syntax is available if the 
user would like to tag each atom with a unique name that can be referenced 
later. For example, the preceding reaction could be rewritten as follows: 
 

A (C1:a C2:b C3:c) + A (C1:d C2:e C3:f) -> B (C1:c C2:b C3:a C4:d C5:e C6:f) 
 
In this case, the ordering of the atom transition entries is arbitrary because the 
atoms are referenced by name rather than order. This syntax also allows for 
multiple characters to be used to designate each atom mapping, which may be 
necessary if reactions involving 63 atoms (i.e., the number that can be mapped 
using single characters from the set [a-zA-Z_0-9]) are included in the network. 
 
When writing transitions for atoms of different types (e.g., hydrogen and carbon) 
it is oftentimes useful to designate uppercase letters for one atom type and 
lowercase for the other, as follows: 
 

A (AabB) + H (c) -> B (AbBc) + H (a) 
 

Here, we have used uppercase letters for carbon atoms and lowercase for 
hydrogen atoms bound to those carbons. It is also possible to use the alternative 
syntax to reference each atom by its name tag: 
 
A (C1:A C2:B H1R:a H1S:b) + H (H1:c) -> B (C1:A C2:B H1:a H2:c) + H (H1:a) 
 
Once a reaction network has been built, additional reactions may be appended to 
the existing network by checking the Append reactions box in the bottom-right 
corner and entering the additional equations as described above.  To avoid 
duplicating the existing reactions, only the new reactions should be typed into 
the Enter network reactions panel prior to clicking Enter.  
 
Save the model by selecting File  Save Model As, which will open a dialog box 
to save the newly created model as a MATLAB .mat file. 
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5.2. Editing network reactions 
 

Users can edit the properties of previously entered reactions by navigating to the 

Edit reactions screen, which can be accessed by clicking the  icon. Several 
reaction parameters can be directly edited within the Edit reaction properties 
panel (Figure 2a).  
 
Under the ID column, a unique name tag can be specified for each reaction to 
replace the default ‘R1’, ‘R2’, etc. scheme. For example, designating each reaction 
by its enzyme name is often a useful choice. 
 

 
Figure 2. Edit reactions screen. 
 
The previously entered reaction equations can be directly edited under the 
Equation column.   It is possible to edit the stoichiometry, atom transitions, or 
reversibility of each reaction, and these changes will be immediately applied 
throughout the rest of the program. 
 
The net and exchange fluxes for each reaction can be edited under the Net and 
Exchange columns, respectively.  The net flux is defined as the difference 
between the forward flux and the backward flux of a reversible reaction, or 
simply as the forward flux of an irreversible reaction.  The exchange flux is the 
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minimum of the forward and backward fluxes of a reversible reaction, or is zero 
for an irreversible reaction.  For example, the reaction  
 

F

B

v

v
A B  

 
has net and exchange fluxes given by: 

 
           

                  
 

Reactions can be activated or inactivated by clicking the checkboxes in the 
Active column. Whenever a new value is entered in the Net or Exchange column 
or edits are made to the Equation or Active column, the software will attempt to 
reconcile the flux values to ensure network feasibility. This involves solving a 
least-squares problem using MATLAB’s lsqlin function to identify a flux vector 
that is “as close as possible” to the user-specified flux distribution while 
satisfying all mass balances of the form S v = 0 , where S is the stoichiometric 
matrix of the balanced species and v is the steady-state flux vector of all forward 
and backward fluxes [3,4]. The flux values entered in this table will be used as 
the basis and/or initial guess for subsequent Constraint-based analysis, Tracer 
simulation, Flux estimation, and Tracer optimization calculations.    
  
Reactions can be assigned to a pathway by entering a text string under the 
Pathway column.  This can be used to group reactions into subsets that can be 
viewed selectively by clicking the desired pathway under the View pathway 
drop-down menu. Assigning reactions to pathways is optional and does not 
impact the subsequent analysis.  
 
Additionally, measurement units for the flux values can be entered under the 
Units column. This text string will be used to annotate figures produced by the 
Flux estimation screen. However, specifying units for each reaction is optional 
and does not impact the underlying calculations. Therefore, it is important to 
maintain internal consistency when specifying the stoichiometric coefficients of 
each reaction equation. Metabolite mass balances are obtained by multiplying 
the stoichiometric coefficient of a given metabolite by the corresponding net flux 
of each reaction in which it appears, and then summing over all reactions. Each 
mass balance thus corresponds to a row in the matrix equation S v = 0 . 
Different flux units can be specified for different reactions and/or different mass 
units can be specified for different metabolites within the same network, as long 
as commensurate units are obtained whenever the mass balances are calculated. 
In other words, each row of the matrix equation S v = 0  must represent a sum 
of terms with like units. 
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Individual reactions can be selected by checking the box under the Select 
column in the Edit reaction properties panel (Figure 2a). Alternatively, 
reactions can be selected as a group by choosing the desired subset using the 
View pathway drop-down menu and then clicking the Select button that 
appears just to the right of the menu. The selected reactions can be copied, 
deleted, or moved up or down in the reaction list by clicking the appropriate 
button under the Modify selected reactions panel (Figure 2b). 
 
All selected reactions will also appear as separate forward and backward fluxes 
under the Edit flux properties of selected reactions panel (Figure 2c). The flux 
names appearing in the ID column are not editable. They are automatically 
generated by appending a ‘.f’ (forward flux) or ‘.b’ (backward flux) extension to 
the corresponding reaction name tag. Also, the Flux column is automatically set 
to the corresponding flux equation. The user can directly edit the unidirectional 
flux values appearing in this panel, and the Net and Exchange columns of the 
corresponding reaction in the Edit reaction properties panel (Figure 2a) will be 
appropriately updated.  It is also possible to set upper and lower bounds on each 
flux by adjusting the values in the LB and UB columns, respectively. These 
bounds will be applied when performing the analyses on the Constraint-based 
analysis and Flux estimation screens. Finally, any flux may be set to a constant 
value by checking the corresponding box in the Fixed column. This value will be 
held fixed when performing Constraint-based analysis or Flux Estimation 
calculations and will be excluded from the set of adjustable parameters when 
performing Identifiability analysis.  This feature is useful when performing flux 
estimations relative to a fixed reference flux. It can also be used to specify a 
desired initial flux distribution by temporarily fixing several independent flux 
values and allowing the program to calculate the remaining dependent fluxes 
using mass balance constraints. (The number of fixed fluxes must be less than or 
equal to the degrees of freedom of the stoichiometric matrix S. Once the network 
is exactly determined by the fixed fluxes, no additional fluxes can be fixed by the 
user.) After the desired initial flux distribution has been obtained, the user can 
reset the fixed fluxes without disturbing the specified flux values. 

5.3. Editing network nodes 
 
Properties of the metabolite nodes (i.e., species) involved in the reaction 
network can be viewed and edited from the Edit nodes screen, which can be 

accessed by clicking the  icon.   
 
Node properties can be edited in the Edit node properties panel (Figure 3). The 
first four columns (ID, Metabolite, Phase, Type) are set automatically by the 
program. The node IDs are the species names collected from the reaction 
equations. If the model includes compartmentation, the metabolite and 
compartment names are displayed separately under the Metabolite and Phase 
columns, respectively. Nodes are classified as either a ‘source’, ‘sink’, or ‘internal’ 
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species. Source nodes are consumed by one or more reactions but are not 
produced within the network. Conversely, sink nodes are produced by at least 
one reaction in the network but are not consumed. Internal nodes are those that 
appear as both products and educts within the network. They are shown with a 
blank entry under the Type column. The node list can be filtered based on Phase 
or Type attributes using the respective drop-down menus at the bottom of the 
screen.  
 

 
Figure 3. Edit nodes screen. Note that the last five columns (Pool size, LB, UB, 
Fixed, Units) are applicable to INST-MFA only and are only visible when the 
Simulate steady-state labeling option is unchecked. 
 
Mass balances on source and sink nodes are infeasible, by definition, and 
therefore must be excluded from the model. This is indicated by the fact that all 
checkboxes in the Balanced column are forcibly unchecked by the program. By 
default, all source nodes are assumed to be unlabeled unless specified as a tracer 
(see Section 6.4). Because the labeling of source nodes is externally specified, the 
isotopomer balances on these species are also excluded from the model. On the 
other hand, isotopomer balances on sink nodes are included in the model, since 
the labeling of sink nodes is dependent on the network fluxes and tracer inputs.  
 
In some cases, it is desirable to specify an internal metabolite as unbalanced 
because it is not subject to mass balance constraints. For example, metabolites 
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such as CO2 or O2 are typically treated as unbalanced because they can freely 
transfer into or out of the system from the extracellular environment. Also, it is 
often necessary to treat cofactors such as ATP or NAD(P)H as unbalanced 
because they are supplied or consumed by processes that have not been 
explicitly included in the reaction network. By unchecking the corresponding 
box in the Balanced column, the mass and isotopomer balances on an internal 
node can be excluded from the model. Similar to source nodes, unbalanced 
internal nodes are assumed to be unlabeled unless the node is specified as a 
tracer (see Section 6.4). This is tantamount to assuming an infinite pool size for 
the node, since its labeling is decoupled from the rest of the network.  
 
INST-MFA only: The node pool size can be edited under the Pool size column. 
This represents the total mass of the node, expressed in units that are 
determined by the metabolite balances and the dynamic time scale of the 
labeling measurements. For example, if the ith row of the mass balance equation 
S v = 0  has units of [Ci] per unit time [t], choosing the time unit [t] of the 

simulation implicitly determines the mass units [Ci] of the corresponding node. 
Setting a node’s Pool size to 0 will apply a quasi-steady state assumption when 
solving the dynamic isotopomer balances associated with this species. As a 
result, the labeling of this node will respond instantaneously to changes in the 
labeling of its precursor metabolites, such that isotopic equilibrium is 
continuously maintained. Any pool sizes set to 0 thus become fixed parameters 
that are not adjusted by the Flux estimation algorithm or included in the 
Identifiability analysis. It is possible to set upper and lower bounds on each 
nonzero pool size by editing the values in the LB and UB columns, respectively. 
These bounds will be applied when performing Flux estimation. It is also 
possible to restrict a given pool size to its user-specified value by checking the 
Fixed box.  Additionally, Units for each pool size can be specified in the final 
column. However, this text string will only be used to annotate figures produced 
by the Flux estimation screen and does not impact the underlying calculations.   

5.4. Editing metabolite properties 
 

Further information about each of the metabolites participating in the network 
can be viewed and updated in the Edit metabolites screen (Figure 4), accessed 

by clicking the  icon.   
 
Each network metabolite is listed in the Select metabolite panel (Figure 4a).  
After selecting a metabolite from the list, the name tag of each atom comprising 
the metabolite and its element type are displayed in the Edit atom properties 
panel (Figure 4b). The entries in the ID column cannot be edited, because they 
are determined by parsing the atom transitions in the reaction network (See 
Section 5.1). However, the Element type can be edited according to the 
composition of the metabolite.  It should be noted that only atoms that can be 
potentially labeled need to be included in the atom transitions. Therefore, in 
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most cases only a single element type will be listed in this table. (The default is 
‘C’, since 13C tracers are most commonly used for MFA studies.) However, if 
isotopes other than carbon are administered, these atoms will need to be 
included in the atom transitions and also updated in the Edit atom properties 
panel (Figure 4b). 
 

 
Figure 4. Edit metabolites screen. 
 
Rotationally symmetric molecules (e.g., fumarate or succinate) cause scrambling 
of isotopic labeling [1].  This can be handled directly by accounting for each 
symmetric orientation as separate terms in every reaction equation where a 
symmetric metabolite appears. Alternatively, INCA provides a simplified 
approach that involves accounting for only one orientation when entering the 
reaction equations and then specifying the symmetric mapping under the Edit 
symmetric atoms panel (Figure 4c). For example, the alpha-ketoglutarate (AKG) 
dehydrogenase reaction could be written as follows (without directly accounting 
for the symmetry of succinate): 
 
AKG (abcde) -> Succinate (bcde) + CO2 (a) 
 
Then, selecting ‘Succinate’ from the list in Figure 4a will allow the user to enter 
its symmetry mapping by clicking New in Figure 4c. This will create a new 
Symmetric mapping with the default orientation ‘4321’. This is similar to an 
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atom transition in that it maps each atom to its new position following a 
symmetry operation: ‘1’ maps to ‘4’, ‘2’ maps to ‘3’, ‘3’ maps to ‘2’, and ‘4’ maps to 
‘1’. This also assumes that each atom is named in order according to the default 
convention ‘1’, ‘2’, ‘3’, ‘4’.  If custom atom names were used when defining the 
reaction network, the default entries in the Symmetric mapping column will 
need to be updated. For example, if the AKG dehydrogenase reaction had been 
written 
 
AKG (abcde) -> Succinate (C1:b C2:c C3:d C4:e) + CO2 (a), 
 
the atoms of Succinate would be assigned the name tags ‘C1’,’C2’,’C3’, and ‘C4’ 
when INCA parses the network. The Symmetric mapping for Succinate would 
then need to be entered as ‘C1:C4 C2:C3 C3:C2 C4:C1’.  
 
A different type of scrambling occurs when metabolites contain groups of 
equivalent atoms that are biochemically indistinguishable [1]. Labeling of any 
atom within the group is rapidly equilibrated across all equivalent positions. For 
example, biochemical equivalency is commonly assumed among the three 
hydrogen atoms bound to a methyl carbon or the two oxygen atoms bound to a 
carboxylate carbon.  This can be an important consideration when analyzing 
hydrogen (2H) or oxygen (18O) tracer experiments. However, atom equivalency 
does not typically impact carbon (13C) tracer experiments. In INCA, equivalent 
atom groups can be entered by selecting the appropriate metabolite from the list 
in Figure 4a and then clicking the New button in the Edit equivalent atoms 
panel (Figure 4d). This will create a default entry with ‘1 2 3’ under List of 
equivalent atoms, which identifies the atoms ‘1’, ‘2’, and ‘3’ as equivalent. If a 
different group of equivalent atoms is desired, list the atom name tags separated 
by spaces as shown in the default example. 
 
It is possible, although not typical, that a metabolite may have more than one 
symmetry operation or more than one group of equivalent atoms. In either case, 
the user can create multiple entries in Figure 4c or 4d by clicking New more than 
once. A unique ID tag can be created for each entry. You can also Copy, Delete, 
or move entries Up or Down in the list by clicking the appropriate buttons 
within each panel. 
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6. Entering Experimental Datasets 
 

When performing MFA, fluxes are estimated by minimizing the difference 
between simulated and experimental measurements. This requires specification 
of (i) flux measurements, (ii) isotope labeling measurements, and (iii) isotope 
tracers to the program. When performing INST-MFA, the user can also specify 
pool size measurements. All of these experimental parameters can be entered in 
the Edit experiments screen (Figure 5), which can be accessed by clicking the 

 icon. When selecting this icon on the primary toolbar, the Edit MS 
measurements panel is initially shown at the bottom of the screen (Figure 5b).  
 

 
Figure 5. Edit experiments screen with Edit MS measurements lower panel 
shown. Panels for editing the flux measurements, pool size measurements 
(INST-MFA only), and tracers can also be accessed using the secondary toolbar. 

6.1. Adding a new experimental dataset 
 

To create a new experimental dataset, click New in the upper Edit experiments 
panel (Figure 5a) and enter a name for the experiment under the ID column.  An 
optional experiment Description can also be entered as a text string.  Selected 
experiments can be copied, deleted, or moved up or down in the experiment list 
by clicking the appropriate button within the Edit experiments panel. One 
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powerful feature of INCA is that it allows multiple experiments to be Active 
simultaneously.  When performing MFA, the program will search for a single flux 
map that minimizes the total lack-of-fit with respect to all active experiments.  
This can be of interest when fitting several replicate experiments or parallel 
labeling experiments with different tracers. 

6.2. Entering flux and/or pool size measurements 
 

Directly measured fluxes (e.g., growth rate, substrate uptake, product formation) 

can be entered by clicking the  icon on the secondary toolbar to display the 
Edit net flux measurements panel at the bottom of the screen. 
 
To add flux measurements to a specific experimental dataset, select that 
experiment in the upper-left Edit experiments panel (Figure 5a).  Click New in 
the Edit net flux measurements panel.  Select a Reaction ID from the drop-
down menu that corresponds to the measured flux.  Enter the measured flux 
value and its standard error (i.e., uncertainty) in the columns marked Data and 
Error, respectively.  Individual flux measurements can be activated or 
deactivated using the checkboxes in the Active column. Selected reactions can 
be copied, deleted, or moved up or down in the list by clicking the appropriate 
button within the Edit net flux measurements panel. 
 
One common mistake when entering experimental measurements is to set the 
standard error to zero.  Because each of the terms in the least-squares objective 
function is weighted by the inverse of its standard error, this will lead to an 
infinite objective function value. When performing MFA calculations, this will 
cause the flux estimation to terminate early and return an infinite (Inf) sum-of-
squared residuals (SSR) value. The program will display a warning message to 
the MATLAB command line indicating which measurement was at fault. 
 
In the same way that flux measurements are entered, pool size measurements 
can also be entered when performing INST-MFA calculations. This can be done 

by clicking the  icon on the secondary toolbar to display the Edit pool size 
measurements panel at the bottom of the screen (INST-MFA only).  Rather than 
selecting a Reaction ID, however, the user will select a Node ID that 
corresponds to the measured species. Then, the measured pool size value (Data) 
and standard error (Error) can be entered and activated/deactivated (Active) 
by editing the appropriate column entries. 

6.3. Entering MS measurements 

To enter and edit mass isotopomer measurements, click the  icon on the 
secondary toolbar to access the Edit MS measurements panel (Figure 5b) at the 
bottom of the screen.   
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To add MS measurements to a specific experimental dataset, select that 
experiment in the upper-left Edit experiments panel (Figure 5a).  Click New in 
the Edit MS measurements panel (Figure 5b) to create a new MS measurement.  
Enter an ID for the MS measurement (e.g., ‘Ala232’) and select the measured 
species from the drop-down menu under the Node ID column.  Enter a list of 
atom IDs (separated by spaces) included in the MS fragment ion under the 
heading Labeled Atom IDs.  These must be chosen from the list of atom IDs 
shown for the corresponding metabolite on the Edit metabolites screen. Under 
the Unlabeled atoms heading, enter the molecular formula of any unlabeled 
atoms that are included in the measured fragment ion but have been excluded 
from the atom transitions in the reaction network (e.g., ‘H6O7P’). These are 
typically atoms introduced by chemical derivatization or heteroatoms that 
cannot become labeled by the tracer. Individual MS measurements can be 
activated or deactivated using the checkboxes in the Active column. Also, 
Selected measurements can be copied, deleted, or moved up or down in the list 
by clicking the appropriate buttons at the right of the table. 
 
Mass isotopomer data must be entered for each active MS measurement listed in 
the Edit MS measurements panel. There are two methods to add mass 
isotopomer data to a specific MS measurement.  The first method is to select the 
corresponding measurement ID from the Edit MS measurements drop-down 
menu. This will bring up a new lower panel with information specific to the 
selected MS measurement. (You can return to the list of all MS measurements in 
the lower panel at any time by selecting the top-most entry ‘Edit MS 
measurements’ from the drop-down menu.)  
 
Clicking the New button will add a new data point to the table with the column 
headings ID, Time (INST-MFA only), Data, Error, and Active.  ID is a unique 
text identifier used to designate each replicate measurement or measurement 
time point. The Time column is only visible when the Simulate steady-state 
labeling option is unchecked. It contains numeric entries that represent the time 
when each data point was collected. The mass isotopomer distribution vector 
(MDV) obtained at each point is entered into the Data column. This is a vector 
that contains the fractional abundance of each mass isotopomer ordered from 
lowest mass (M0) to highest mass, with each element of the vector separated by 
a space. For example, an MDV with M0 abundance of 0.5, M1 abundance of 0.3, 
and M2 abundance of 0.2 would be entered as ‘0.5 0.3 0.2’. ‘NaN’ can also be 
entered for any elements of the MDV that are missing or unmeasurable. When 
performing MFA calculations, the program introduces MS scaling factors that 
renormalize the measured MDVs. By optimizing the values of these scaling 
factors, the program removes the effects of missing (i.e., ‘NaN’) elements. In 
addition to the measured MDV, the standard error associated with each mass 
isotopomer abundance should be entered in the Error column. This can be 
entered as a vector of the same length as the Data vector, where each element 
represents the standard error of the corresponding MDV element. It is also 
possible to enter a single value that applies to all elements of the Data vector.  If 
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no value is entered in the Error column, a default standard error vector will be 
assumed based on typical values: 0.3 mol% for mass isotopomer abundances 
0.5 mol% with linear scaling up to 1 mol% for mass isotopomer abundances 
25 mol%. Note that each element of the Error vector must be larger than zero; 
otherwise, infinite SSR values will be returned by the MFA calculation. One or 
more data points can be activated/deactivated by checking the appropriate 
boxes under the Active column heading. When performing stationary MFA, the 
program will treat each active point as a replicate MS measurement and will 
attempt to fit all active data points simultaneously. When performing INST-MFA, 
on the other hand, each active MS measurement represents a separate time 
point, and the program will optimize flux and pool size parameters to match the 
experimental labeling trajectories. 
 
Once the measured MDVs have been entered, they can be Selected for plotting in 
the accompanying figure panel (Figure 5c). Selected data points can also be 
copied, deleted, or moved up or down in the list by clicking the appropriate 
buttons to the right of the table. Additionally, INCA is capable of correcting MDVs 
for natural isotope abundance of labeled and unlabeled atoms using the 
approach of Fernandez et al. [5].  Selecting OptionsShow corrected MS data 
will display the corrected data in the figure panel as well as the data table. The 
table entries under the Data and Error columns will become uneditable when 
the corrected data are displayed. The user can edit the raw data again only after 
unchecking Show corrected MS data. If the MS data were previously corrected 
for natural isotope abundance prior to being entered, selecting Show corrected 
MS data will produce erroneous values because further correction is 
unnecessary. In this case, the user should also de-select Simulate natural 
abundance of labeled atoms and Simulate natural abundance of unlabeled 
atoms under the Options menu prior to performing tracer simulations or flux 
estimations. 
 
The second method for MS data entry is to import data from an Excel 
spreadsheet.  After selecting Edit MS measurements from the drop-down menu 
to reveal the full list of MS measurements, a button will appear in the list at the 
far-right labeled Import.  Checking the desired measurement as Selected 
followed by clicking Import will bring up a dialog box that will guide the user 
through the import process.  The method of import is platform-dependent, as 
described below. 
 
Importing MS data from Excel: Mac vs. Windows 
 
For both Mac and Windows operating systems, separate MDV data points 
associated with the Selected MS measurement should be arranged into columns 
within the Excel spreadsheet from lowest (M0) to highest mass isotopomer 
(Figure 6). These values will be imported into the Data column of the associated 
MS measurement panel in INCA. Each MDV column should have a time stamp 
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along the header row that will be imported with the MS data. (If only steady-
state labeling data are imported, the time values will not be used by the program 
and arbitrary time stamps can be placed in the header row.) The adjacent 
column to the right of each MDV column should contain the standard errors 
associated with the MDV. These values will be imported into the Error column. 
For Macs, each MS measurement should be placed on a separate worksheet 
within the Excel file.  After clicking the Import button, a dialog box will prompt 
the user to enter the name of the Excel file and, on Macs, the worksheet to be 
imported. For Windows, the data for separate MS measurements (i.e., fragment 
ions) can be placed on the same worksheet, and the area to be imported can be 
interactively selected after specifying the Excel file. 
 

 
Figure 6. Example of MS data formatted for import from Excel. 

6.4. Editing tracer information 
 

Information about the tracer(s) used in each experiment is required by INCA to 
correctly model the isotope labeling data. This information can be edited by 

selecting the  icon on the secondary toolbar to access the Edit tracers panel 
at the bottom of the screen.  To add a tracer to a particular dataset, select that 
experiment in the Edit experiments panel (Figure 5a) and click New in the Edit 
tracers panel.  Provide a unique name tag for the tracer in the ID column and 
select the labeled species in the Node ID drop-down list.  The fractional 
abundance of the tracer should be entered in the Enrichment column as a 
numerical value between 0 and 1. Multiple tracers can be entered, 
corresponding to the same or different labeled species, by clicking New more 
than once. If the total enrichment of a particular labeled species sums to less 
than 1, the balance is assumed to be unlabeled (or naturally labeled, if 
OptionsSimulate natural abundance of labeled atoms is selected). Any 
source nodes or unbalanced nodes that are not specified in the Edit tracers 
panel are assumed to be 100% unlabeled (or naturally labeled). Selected tracers 
can be copied, deleted, or moved up or down in the list by clicking the 
appropriate buttons to the right of the table. 
 
Each tracer can be further edited by selecting its ID from the Edit tracers drop-
down menu.  Clicking the New button to the right of the table will create a group 
of labeled atoms that are assumed to have the same isotopic purity (i.e., 
fractional enrichment). For each table row created, a space-delimited list of 
Atom IDs can be entered to designate the metabolite atoms that are included in 
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the group. The labeling of each atom group is specified by entering its Atom 
MDV, which represents the MDV of each individual atom in the group. For 
example, entering the vector ‘0 1’ corresponds to a group of atoms that have 0% 
probability of being unlabeled (M0) and 100% probability of being M1 labeled. 
This syntax is easily generalizable to isotopes with mass shifts >1 (e.g., a 100% 
18O tracer would have an Atom MDV of  ‘0 0 1’ because it is shifted two mass 
units away from the lowest mass 16O isotope). It can also be used to designate 
tracers with <100% isotopic purity by entering the appropriate mass 
distribution (e.g., a 13C tracer with 99% isotopic purity would have an Atom 
MDV of ‘0.01 0.99’). The specified Atom MDV applies to all atoms within the 
group and assumes the same isotopic purity for all atoms. For example, a glucose 
tracer that is labeled with 95% isotopic purity on atom 1 and 99% purity on 
atom 6 should be specified with two groups of labeled atoms: one with Atom ID 
‘1’ and Atom MDV ‘0.05 0.95’ and the other with Atom ID ‘6’ and Atom MDV 
‘0.01 0.99’. Checking the Selected box for one or more atom groups will plot the 
combined MDV of these groups in the upper-right panel (Figure 5c). Selected 
atom groups can also be copied, deleted, or moved up or down in the list by 
clicking the appropriate buttons at the right of the table. 
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7. Constraint-based Analysis 
 

There are several types of constraint-based analysis that can provide insight into 
metabolic network capabilities, even in the absence of experimental 
measurements [3,6]. These methods are based on analyzing the solution space, 
or “flux cone”, associated with the undetermined system of mass balance 
equations 

net
N v = 0 , where N is the stoichiometric matrix associated with the 

net fluxes contained in the vector vnet. Once a reaction network has been entered 

into INCA, selecting the  icon from the primary toolbar will display the 
Constraint-based analysis screen (Figure 7), which provides a variety of tools 
to assess network function and to predict metabolic phenotypes. Many of these 
tools are also useful when developing new models for MFA, as they can help 
users identify potential network inconsistencies such as “blocked” pathways 
(where net flux is forced to zero by mass balance constraints), or locations 
where material can enter/leave the network via unbalanced nodes.  
 
The main Edit net flux parameters panel (Figure 7a) displays all active 
reactions in the network. The Index, ID, Equation, Value, and Fixed columns 
are not editable. They are set according to the values entered on the Edit 
reactions screen, and the user must navigate back to that screen in order to edit 
these values directly. On the other hand, the values in the Weight, LB, and UB 
columns can be edited to specify objective function weights, flux lower bounds, 
and flux upper bounds, respectively. The default values in the LB and UB 
columns are taken from the flux bounds entered previously on the Edit 
reactions screen. However, changes made to these columns only apply to 
Constraint-based analysis calculations and will not propagate to other screens. 
The entries in the Weight, LB, and UB columns can be reset to their default 
values at any time by clicking the Reset button under the Perform analysis 
panel (Figure 7b). 
 
When performing certain calculations (e.g., FBA and MOMA), the resulting 
solution vector will be returned in the Value column. In order to copy this result 
over to the Edit reactions screen so that it will become the new flux basis of the 
network model, the user must click the Update Model button under the 
Perform analysis panel (Figure 7b). Otherwise, the result will be lost when 
navigating away from the Constraint-based analysis screen. 
 
The drop-down menu in the Perform analysis panel (Figure 7b) is used to select 
the type of analysis requested, and the Calculate button is used to generate the 
results. After calculations have been completed, a status message will appear in 
the text box at the lower-left of the screen with a description of program outputs 
and any warnings returned during the analysis. A graphical representation of the 
analysis results will also be displayed in the View results panel (Figure 7c). 
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Figure 7. Constraint-based analysis screen. 
 
Further details about each of the Constraint-based analysis techniques 
available within INCA are provided in the following sections. Note that all of 
these features were added to the program recently, and they should be treated 
as “experimental” until more extensive testing has been completed.  

7.1. FBA 
 
Flux balance analysis (FBA) applies linear programming to search for a flux 
vector vnet that maximizes a scalar objective function z   netw v  subject to the 

mass balance constraints 
net

N v = 0and upper/lower bounds on all fluxes. Here, 

w is a “weighting vector” that specifies the contribution, or weight, of each net 
flux to the overall objective function value. The elements of this vector can be 
entered directly under the Weight heading. Selecting ‘FBA’ from the drop-down 
menu in Figure 7b and clicking Calculate applies MATLAB’s linprog function 
to calculate the optimal flux vector determined by the entries in the Weight 
column and the lower and upper bounds in the LB and UB columns, respectively. 
The solution vector is displayed in the Value column, and the result is plotted in 
the figure panel at lower-right (Figure 7c). Further information about FBA can 
be found in references [3] and [7].  
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7.2. MOMA 
 

Minimization of metabolic adjustment (MOMA) is a method to predict the 
phenotype of recombinant “knockout” strains. It assumes that the metabolic 
network of the host cell is regulated to minimize the impact of genetic 
perturbations, and that the flux phenotype of a knockout strain will be “as close 
as possible” (in the least-squares sense) to that of its parent strain, subject to the 
additional flux constraints imposed by gene deletions. The MOMA prediction for 
the knockout flux vector vKO is obtained by minimizing the quadratic objective 

function 
2

z  KO WTv v  subject to the mass balance constraints 
KO

N v = 0 and 

upper/lower bounds on all net fluxes in vKO. Here, vWT is the net flux vector of 
the “wild-type” parent strain. This is a linear least-squares problem that can be 
solved using MATLAB’s lsqlin function to determine the net flux vector vKO 
predicted for the knockout strain. Typically, the flux constraints on vKO are more 
restrictive than those on vWT, thus forcing the knockout solution to deviate from 
that of its wild-type parent. 
 
Performing MOMA predictions in INCA involves first setting the initial flux basis 
shown in the Value column to that of the wild-type strain. These values may be 
entered directly on the Edit reactions screen (see Section 5.2) or may be the 
output of a previous MFA or FBA calculation. (Tip: when entering fluxes on the 
Edit reactions screen, it helps to temporarily ‘fix’ fluxes as they are specified so 
that they won’t be further adjusted by the program when subsequent fluxes are 
entered.  The fixed fluxes can be freed up once again after all values have been 
specified, before returning to the Constraint-based analysis screen.) After the 
wild-type flux basis has been set, the next step is to adjust the flux bounds in the 
LB and/or UB columns to reflect the gene deletions introduced to the knockout 
strain (e.g., set the upper and lower bounds of all knocked-out reactions to zero). 
Finally, select ‘MOMA’ from the drop-down menu in Figure 7b and click 
Calculate to generate the MOMA flux prediction. The knockout solution vector is 
displayed in the Value column, and a comparison of the wild-type and mutant 
strains is plotted in the figure panel at lower-right (Figure 7c). Further 
information about MOMA can be found in references [3] and [8]. 

7.3. FVA 
 

Flux variability analysis (FVA) determines the range of flux values that can be 
attained while holding the objective function at its maximum level zmax. The 
calculation applies MATLAB’s linprog function to first maximize and then 
minimize each flux, one at a time, subject to the constraint that z = zmax (in 
addition to the mass balance constraints 

net
N v = 0and user-specified flux 

bounds). This defines the upper and lower limits of the allowable range for each 
flux under optimal conditions. Selecting ‘FVA’ from the drop-down menu in 
Figure 7b and clicking Calculate replaces the user-specified values shown in the 
LB and UB columns with the flux limits determined by the FVA algorithm, using 
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the objective function weights specified in the Weight column. The flux 
variability ranges are plotted graphically in the figure panel at lower-right 
(Figure 7c), and the median of each range is displayed in the Value column of the 
data table.  
 
If all upper and lower flux limits are equal to each other, it implies that the FBA 
solution for the specified network and objective function is unique. In this case, 
the median values returned in the Value column should match the FBA solution. 
If some upper and lower flux limits are not equal to each other, this implies that 
degenerate FBA solutions exist. In this case, the variability range for each flux 
represents the uncertainty of its FBA solution. Another useful application of the 
FVA feature is to determine the entire feasible range of each flux, determined 
solely by the mass balance constraints and user-specified flux bounds. This can 
be accomplished by setting all entries in the Weight column to zero prior to 
performing FVA so that all feasible flux distributions will have the same 
objective function value (=0). Further information about FVA can be found in 
references [3] and [9]. 

7.4. FCF 
 

The flux coupling finder (FCF) algorithm can be used to identify structural 
network dependencies that link fluxes together. The algorithm is similar to FVA 
and is described in detail by Burgard et al. [10]. Pairs of reaction fluxes are 
classified as either (1) directionally coupled, if the activity of one flux implies the 
activity of the other without the converse necessarily holding true, (2) partially 
coupled, if the activity of one flux implies the activity of the other and vice versa, 
or (3) fully coupled, if activity of one flux fixes the activity of the other to a 
proportional value. The FCF also identifies “blocked” reactions, which are 
incapable of carrying flux under steady-state conditions.  
 
Selecting ‘FCF’ from the drop-down menu in Figure 7b and clicking Calculate 
plots the flux coupling results as a matrix diagram in the figure panel at lower-
right (Figure 7c). Each colored element of the matrix (e.g., with row index i and 
column index j) represents the coupling relationship between two fluxes (e.g., vi  

and vj). A white entry indicates no coupling between vi and vj. A dark red entry 
indicates full coupling between vi and vj (vi  vj). A light red entry indicates 
directional coupling whereby a nonzero vi implies a nonzero vj (vi  vj). If the 
symmetric element at position (j, i) is also light red, this indicates partial 
coupling between vi and vj (vi  vj). Finally, a black entry along the matrix 
diagonal indicates that the corresponding flux is blocked. 

7.5. Robustness analysis 
 

Robustness analysis is an approach to assess the sensitivity of a metabolic 
objective function to changes in a single flux vj. This involves solving the FBA 
subproblem repeatedly while varying vj between its lower and upper limits in a 
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step-wise manner. To perform robustness analysis in INCA, the user must first 
specify the objective function weights in the Weight column and then select the 
flux to vary by checking the corresponding box in the Selected column. Finally, 
selecting ‘Robustness analysis’ from the drop-down menu in Figure 7b and 
clicking Calculate plots the robustness analysis results in the figure panel at 
lower-right (Figure 7c). The plot depicts the maximum objective function value 
obtainable as a function of the varied flux. The slope of this plot represents the 
shadow price of the varied flux. Further information about robustness analysis 
can be found in reference [3]. 

7.6. PhPP analysis 
 

Phenotype phase plane (PhPP) analysis is similar to robustness analysis, except 
that two fluxes are varied simultaneously to produce a two-dimensional plot. To 
perform PhPP analysis in INCA, the user must first specify the objective function 
weights in the Weight column and then select two fluxes to vary by checking the 
corresponding boxes in the Selected column. Finally, selecting ‘PhPP analysis’ 
from the drop-down menu in Figure 7b and clicking Calculate plots the 
phenotype phase plane in the figure panel at lower-right (Figure 7c). The plot 
depicts the maximum objective function value obtainable as a function of the 
two varied fluxes. The plot is typically separated into several distinct regions 
where the relative slopes (i.e., shadow prices) of the two varied fluxes remain 
constant. These regions represent distinct metabolic phases with differing flux 
phenotypes. Further information about PhPP analysis can be found in references 
[3] and [11]. 
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8. Tracer Simulation 
 

MFA involves solving an “inverse problem” where metabolic fluxes and pool 
sizes are estimated by iterative least-squares regression of measured isotope 
labeling patterns. At each iteration, a “forward problem” is solved in order to 
simulate measured isotopomer distributions resulting from a given metabolic 
network and a given set of parameter estimates. This involves numerical 
solution of isotopomer balance equations for all measurable metabolites, either 

at steady state [1] or non-steady state [2]. In INCA, clicking the  icon will 
display the Tracer simulation screen (Figure 8), which allows the user to 
directly simulate mass isotopomer distributions (i.e., solve the forward problem) 
based on an initial set of flux and pool size parameters. This can be useful for 
determining which measurements are sensitive to certain fluxes. It can also aid 
in the selection of tracers or tracer combinations that are capable of precise flux 
quantification. Therefore, simulation of isotope labeling experiments based on 
best-guess parameter estimates is an important tool for identifying optimal 
combinations of tracers, measurements, and sampling time points. This can be 
done before any actual experiments have taken place, thus saving time and effort 
through careful a priori experiment design. 
 

 
Figure 8. Tracer simulation screen (example shown is based on a transient 
isotopomer model). 
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8.1. Simulating isotope labeling 
 

In order to simulate isotope labeling, initial flux estimates must be entered into 
the program. This can be done either at the Edit reactions screen (Section 5.2) 
or within the Edit flux parameters panel (Figure 8a) on the Simulate labeling 

screen that appears when first selecting the  icon on the primary toolbar. 
(The Simulate labeling screen can also be reached from other Tracer 

simulation screens by clicking the  icon on the secondary toolbar.) The 
entries in both the Value and Fixed columns of the Edit flux parameters panel 
(Figure 8a) can be edited directly. Whenever edits are made to these columns, 
the software will attempt to reconcile the flux values to ensure network 
feasibility. (Tip: it is sometimes helpful to temporarily ‘fix’ fluxes as they are 
specified so that they won’t be adjusted by the program when subsequent fluxes 
are entered.  The fixed fluxes can be freed up once again after all flux values have 
been specified.) Similarly, node properties can be entered by selecting Edit node 
parameters from the drop-down menu at the top-left of Figure 8. The panel that 
appears in Figure 8a can be used to specify which nodes are Balanced. It can 
also be used to enter initial Pool size estimates when performing transient 
isotopomer simulations (INST-MFA only).  
 
Once the network parameters have been specified, clicking the Simulate button 
will launch the calculation. A progress bar will appear that can be used to cancel 
the simulation at any time, if desired. When complete, the progress bar will 
disappear and control will return to the INCA window. The listbox in the View 
simulation results panel (Figure 8b) will be immediately populated with the 
names of all simulated isotopomer measurements available for inspection. The 
results can be viewed by clicking the desired MS measurement in the list and 
selecting the experiment of interest from the Select experiment drop-down 
menu. The simulated mass isotopomer distributions will be displayed in the data 
table at the bottom-right and will be plotted in the figure panel above (Figure 
8c). When performing steady-state simulations, a single mass isotopomer 
distribution ‘M0 M1 M2 …’ will be displayed for each MS measurement in the 
Data column of the table and will be shown as a bar graph in the figure window. 
When performing transient simulations, multiple measurement time points will 
be shown in the table, and a Time column will appear to indicate the 
corresponding sample times (INST-MFA only). In this case, the entire labeling 
trajectory for the selected MS measurement will be displayed as a line plot in the 
figure window. 
 
Whenever simulated data are displayed in the figure window, it is possible to 
overlay the plot with the actual data entered on the Edit experiments screen 
(see Section 6.3) by checking the Plot experiment data box. This will enable a 
direct comparison between simulated and experimental mass isotopomer data. 
Additionally, checking the Show average enrichment box will plot the average 
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isotopic enrichment of the selected MS measurement, as defined by the formula 
     ∑      

    where N is the number of labeled atoms in the MS ion 
fragment and Mi is the fractional abundance of the ith mass isotopomer.  
 
When performing simulation studies of isotope labeling experiments, it is often 
useful to perform flux estimation and confidence interval calculations using 
simulated measurements, in order to assess the flux resolution that is achievable 
using various experimental designs. This can be readily accomplished by clicking 
the Update model button, which will copy all of the simulated MS 
measurements into the Edit experiments screen so that they can be treated as 
actual experimental data. Then, one can perform flux estimations and confidence 
interval calculations from the Flux estimation screen (see Section 9) based on 
the simulated measurements, even if no actual measurements were initially 
provided. This is the most rigorous approach to assess the precision of flux 
estimates obtainable from a particular experiment design. However, it is very 
important to note that clicking the Update model button will overwrite any of 
the previously entered MS data, so make sure that you have saved the model file 
before attempting this.  

8.2. Adjusting integration parameters (INST-MFA only) 
 
Steady-state isotopomer measurements can be simulated to a high degree of 
accuracy, because the solution is calculated by inverting a system of linear 
algebraic equations [1]. Transient isotopomer measurements, on the other hand, 
contain significant error because they result from numerical integration of 
ordinary differential equations (ODEs) [2]. Therefore, it is sometimes necessary 
to adjust the error tolerances and other integration parameters used to solve the 
transient isotopomer balances by selecting OptionsNonsteady-state 
simulation parameters. (This item is only active when the Simulate steady-
state labeling option is unchecked.) A dialog box will appear that allows the 
user to set (i) the simulation time units, (ii) the simulation time span, (iii) the 
maximum time step, relative integration tolerances for both (iv) the simulated 
mass isotopomer abundances and (v) the simulated sensitivities, and (vi) the 
integration timeout. The simulation time units entry should contain a text 
string that will be used to annotate plots produced on the Tracer simulation 
and Flux estimation screens, but otherwise does not impact the underlying 
calculations. The simulation time span is a space-delimited list of simulation 
time points to be evaluated during the integration. If only two points are 
entered, these will be treated as the initial and final time points of the 
simulation, and the intermediate time points will be determined by the ODE 
solver routine. If more than two points are entered, simulation results will only 
be returned at the specified times and the outputs at other time points will be 
suppressed. For example, entering ‘0 5 10 15 20 25’ will only return values at the 
listed time points. Setting the maximum time step to a finite number will 
restrict the integration time step to be no larger than the value specified. This is 
useful if the results appear too granular when performing simulations using the 
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default step size determined by the ODE solver. The relative integration 
tolerance on simulated data controls the maximum allowable local error that 
is introduced at each time step of the integration. Similarly, the relative 
integration tolerance on sensitivities controls the local accuracy of sensitivity 
equation integration. (The default values of 0.001 and 0.01 for the former and 
latter, respectively, have been found to provide an acceptable tradeoff between 
accuracy and performance when simulating typical MS data.) Finally, the 
integration timeout can be set to terminate long-running integrations that 
exceed the specified limit. This can be quite important when performing INST-
MFA, as some parameter sets will cause the isotopomer balances to become 
overly stiff or will lead to integration time steps that are too small to provide a 
complete solution within a reasonable time. When the timeout threshold is 
encountered, the integration will terminate and the INST-MFA algorithm will 
attempt to find a new parameter set that is closer to the previous point of 
successful integration.  

8.3. Identifiability analysis 
 

There are several local identifiability metrics that can be calculated based on the 
simulated MS data, if the Simulate sensitivities option was checked at the time 
when the tracer simulation was performed. These can be viewed by clicking the 

 icon on the secondary toolbar. Doing so will display a heat map of the 
selected identifiability matrix. There are several possible choices available under 
the Select matrix drop-down menu, which are described in further detail below. 
Each matrix is arranged with adjustable model parameters along the rows. Some 
matrices have experimental measurements arranged along the columns 
(contribution and sensitivity matrices) and others have the adjustable 
parameters arranged along both the rows and columns (covariance and 
correlation matrices).  A single parameter or subset of parameters can be 
selected for display using the Select parameter drop-down menu. The 
experiment of interest can be selected using the Select experiment drop-down 
menu, and a single measurement or subset of measurements can be selected 
using the Select measurement drop-down menu. (If the covariance or 
correlation matrix is displayed, these two latter menus will be inactive, and the 
matrix will be calculated using all available measurements.)  
 
The five possible matrices that can be viewed on the Identifiability analysis 
screen are as follows (see Antoniewicz et al. [12] for further details): 

 Contribution matrix. Each element of this matrix (e.g., at row i and column 
j) represents the fractional contribution of the jth measurement to the 
local variance of the ith parameter. Therefore, all elements are positive 
and each row of the matrix sums to 1. When more than one MS 
measurements are displayed, the contributions of all mass isotopomers 
and time points are summed to give an overall contribution for each MS 
measurement. When a single transient MS measurement is displayed, the 
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contributions of all mass isotopomers are summed to give an overall 
contribution for each time point (INST-MFA only). Finally, if a single 
steady-state measurement is displayed, the contribution of each 
individual mass isotopomer measurement is shown separately.  

 Scaled covariance matrix. Each element of this matrix (e.g., at row i and 
column j) is scaled by dividing the raw covariance matrix entries ij by 
the sum of |kikj| + |ij|, where ki (kj) is the value of the ith (jth) adjustable 
parameter. This will scale the matrix elements to the range [-1,1]. Large 
relative covariances will be indicated by matrix elements that approach 1 
or -1, while small relative covariances will be indicated by matrix 
elements near 0.  

 Correlation matrix. Each element of this matrix (e.g., at row i and column 
j) is calculated by dividing the raw covariance matrix entries ij by the 

square-root of the corresponding variances
ii jj  . The diagonal 

elements of the correlation matrix are 1, by definition. Each off-diagonal 
element represents the correlation coefficient between parameters ki and 
kj. Coefficients near 1 indicate positive correlation, coefficients near -1 
indicate negative correlation, and coefficients near 0 indicate that ki and 
kj are uncorrelated. 

 Scaled sensitivity matrix. Each element of this matrix (e.g., at row i and 
column j) represents the partial derivative of the ith parameter with 
respect to the jth measurement. The absolute value of each element is 
calculated and scaled by the maximum absolute value within its row, so 
that all entries are in the range [0,1]. When more than one MS 
measurements are displayed, the root-mean-square (RMS) value over all 
mass isotopomers and time points is calculated to give an overall 
sensitivity for each MS measurement. When a single transient MS 
measurement is displayed, the RMS value over all mass isotopomers is 
calculated to give an overall sensitivity for each time point (INST-MFA 
only). Finally, if a single steady-state measurement is displayed, the 
scaled sensitivity of each individual mass isotopomer measurement is 
shown separately.  

 Error sensitivity matrix. This matrix is computed in the same way as 
described above, except that the derivative is calculated relative to the 
measurement error rather than the measurement value. 
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9. Flux Estimation 
 
Solving the inverse problem to estimate intracellular fluxes is at the heart of 
MFA. This involves an optimization search to identify flux parameters (and pool 
sizes, in the case of INST-MFA) that minimize the sum-of-squared residuals 
(SSR) between computationally simulated and experimentally determined 
measurements [13,14]. The inverse problem can be expressed mathematically as 
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The SSR objective function  is minimized by adjusting the vector of free fluxes 
u, the vector of pool sizes c, and the vector of MS scaling factors h. A scaling 
factor is used to renormalize each MDV, since only the relative abundances of 
mass isotopomers are important for flux estimation, not absolute abundances. 
This enables the program to readily account for missing mass isotopomer 
measurements, so that complete MDVs are not required by INCA (i.e., some 
elements can be ‘NaN’ values). See Mollney et al. [15] for more information on 
the use of measurement scaling factors in isotopomer models. 
 
The objective function is calculated by first simulating the measurement vector 
m, which is in general a function of u, c, h, and the time coordinate t. (For steady-
state MFA, m is only a function of u and h.) The vector m consists of all 
simulated flux, pool size, and mass isotopomer distributions for which 
experimental measurements are available. For any realistic network model (i.e., 
containing no “traps”), m can be explicitly and uniquely calculated by solving the 
forward problem (i.e., solving all mass and isotopomer balance equations) for a 
given set of model parameters u, c, and h [16,17]. Once m has been simulated, 
the residual vector r can be constructed by differencing each element of m with 
the corresponding element of the experimental measurement vector m̂ . To form 
the objective function , each residual ri is weighted by the inverse of its 
standard measurement error i, and the weighted residuals are each squared 
and then summed together. This is written as a weighted inner product of r with 

itself, using the diagonal weighting matrix  
-1-1

Σ diag σ .  

 
The optimization search is subject to non-negativity constraints on the 
forward/backward fluxes v, the pool sizes c, and the scaling factors h. The 
elements of v can be obtained by multiplying the free flux vector u by the kernel 
matrix K, whose columns span the null space of the stoichiometric matrix S (i.e., 
the columns of K form a basis set for generating all solutions of the mass balance 
equations S v = 0 ) [12]. The search algorithm iteratively adjusts the parameters 
u, c, and h and recalculates  until no further improvement is achievable. 
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9.1. Parameter optimization 
 

Once a network model has been constructed and experimental datasets have 
been entered into INCA, MFA calculations can be performed by clicking the Flux 

estimation icon . Initially, this will reveal the Optimize parameters screen 
(Figure 9), which can also be reached from other Flux estimation screens by 

clicking the  icon on the secondary toolbar. Clicking the Estimate Fluxes 
button within the Perform analysis panel (Figure 9b) will launch the iterative 
MFA calculation procedure. 
 

 
Figure 9. Flux estimation screen. 
 
INCA applies a Levenberg-Marquardt (local search) algorithm to minimize the 
SSR objective function  described above [18,19]. A reduced gradient method is 
applied to handle the linear inequality constraints on the parameters u, c, and h 
[20]. At each iteration, the change in the parameter vector p = [u c h]T is 
computed by solving a quadratic programming (QP) subproblem of the form 
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The Jacobian matrix J is computed by solving the sensitivity equations that are 
obtained by differentiating the isotopomer balances with respect to the model 
parameters [1,2]. The sensitivity equations are solved in tandem with the 
balance equations at each iteration of the search. The Jacobian matrix can be 
used to estimate the Hessian matrix H =  and gradient vector g = , as 
shown above. The columns of the matrix Z span the null space of the active 
inequality constraints, and therefore Z is used to project the step direction p 
onto a subspace that is orthogonal to the active constraints (i.e., so that  A Δp 0

where A is the matrix of active constraint coefficients) [20].  
 
The solution to the QP subproblem is obtained by inverting the matrix G to 

obtain the solution    -1
Δp Z G f . The Levenberg-Marquardt algorithm 

ensures that the matrix G is positive-definite (and therefore invertible) by 
adding a diagonal matrix I to H prior to projection, where I is the identity 
matrix and  is the so-called “damping parameter” that is used to penalize large 
steps [18,19]. (Note: The damping parameter is referred to as  in reference 
[18].) As a result, the inverse of G can be stably and efficiently computed using 
its Cholesky factorization. Once the optimal step p has been calculated, the 
algorithm will attempt to compute the value of  at the corresponding point in 
parameter space (or at an intermediate point, if an inactive inequality constraint 
is encountered that forces the step to be truncated). This move is accepted if it 
results in an improved value of . Otherwise, the value of  will be increased and 
a new step will be computed.  
 
Each time a step is accepted, the next iteration will commence from this new 
point in parameter space. If a full step was taken without hitting a constraint, the 
Lagrange multipliers of all active constraints will be computed to determine 
whether any non-binding constraints can be dropped from the active set. 
Otherwise, the blocking constraint will be added to the active set.  
 
Several options can be adjusted to control the convergence of the optimization 
search algorithm. Selecting OptionsOptimization parameters will display a 
dialog box where these parameters can be directly edited. The ‘relative 
convergence tolerance’ should be set to the maximum relative uncertainty that is 
acceptable in each element of the parameter vector (default value is 0.01, or 
1%). This will determine the termination threshold based on size of p relative 
to the current parameter vector p. The user can also set the ‘tau’ parameter 
described in reference [18], which controls the initial size of the damping 
parameter (default value is 1×10-6). If this value is set too large, the search 
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algorithm will terminate prematurely because p will be over-damped during 
the first few iterations, and the algorithm will not have enough time to properly 
adapt the value of  prior to achieving convergence. It is also possible to enhance 
the probability of obtaining a global optimum solution by performing a 
“multistart”. Setting OptionsUse random initial guess for flux estimation to 
be checked will randomize the initial flux and pool size values stored in the 
network model prior to optimization. The amount of random noise introduced to 
each parameter is determined by the option ‘number of logs to perturb initial 
values’ within the OptionsOptimization parameters dialog box. This option 
specifies the maximum number of logarithms (i.e., powers of 10) that each 
parameter can be varied in either direction, up or down. The actual starting 
guesses will be uniformly sampled from this interval. Finally, setting the ‘number 
of restarts’ option to a value greater than 1 will repeat the flux estimation 
calculation the specified number of times. If the initial guesses are randomized, 
this is tantamount to a multistart global search algorithm with Levenberg-
Marquardt local searches. (If the initial guesses are NOT randomized, this is a 
BIG waste of time because all local searches will arrive at the same result!) If 
INCA has been configured to run within a distributed computing environment, 
each restart will be performed as a parallel job (see Section 2 and Appendix E for 
details).  
 
After clicking the Flux estimation button, the progress of the optimization 
search can be tracked from the MATLAB command window. After each iteration, 
the current SSR value (‘Residual’) is printed to the screen, along with the relative 
‘Step-size’, the ‘Directional derivative’ g Δp , and the damping parameter value 

‘Lambda’ from the previous step. If no blocking constraint was encountered, the 
‘Step-size’ will be reported as ‘1’. Otherwise, the reported value represents the 
fraction of the optimal step taken prior to hitting a constraint.  
 
Upon termination of the search, control will return to the INCA GUI window and 
the flux estimation results will appear in the upper-left panel (Figure 9a) of the 
Optimize parameters screen. The drop-down menu above the table can be used 
to select a subset of parameters for viewing: either ‘all fluxes’, ‘net fluxes’, 
‘exchange fluxes’, ‘pool sizes’, or ‘MS norms’ (i.e., scaling factors). The optimal 
‘Value’ of each parameter will be displayed along with its standard error 
(‘StdErr’), which is a local estimate of uncertainty obtained from the diagonal 
elements of the parameter covariance matrix evaluated at the optimal solution 
[12]. The parameter values shown in the table WILL NOT automatically replace 
the base values stored in the network model.  However, clicking Update Model 
in Figure 9b will copy these values into the network model and overwrite the 
previously stored values. If flux estimation is subsequently repeated, the newly 
stored values will be used when initializing the optimization search.  
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9.2. Assessing goodness-of-fit 
 
The flux estimation results are only meaningful if the model is able to achieve an 
acceptable fit to the experimental data. Otherwise, some inconsistency exists in 
the model or data that needs to be corrected before further analysis can be 
performed. When flux estimation has completed, INCA automatically provides 
several statistical metrics that can be used to assess goodness-of-fit. The text box 
at the bottom-left of the Optimize parameters screen (Figure 9b) provides a 
status message indicating whether the fit is accepted based on the SSR value 
obtained. This test assumes that the minimized variance-weighted SSR follows a 
chi-square distribution with n-p degrees of freedom (DOF), where n is the 
number of independent measurements and p is the number of fitted parameters. 

The expected SSR range is calculated as    2 2

1
2 2

,n p n p  


  
  

, where α is a 

threshold p-value at which the fit is rejected. (The program default is  = 0.001.) 
The fit is ‘accepted’ if the actual SSR falls within the limits of the expected SSR 
and is ‘rejected’ if it does not. 
 
In addition to performing a chi-square test on the total SSR, the distribution of 
the residuals should also be analyzed at convergence. The error-weighted 
residuals are expected to be normally distributed with zero mean. INCA applies 
the Lilliefors test to evaluate the normality assumption using MATLAB’s 
lillietest function and the previously described  significance level. The 
outcome of the Lilliefors test, as well as the estimated mean and standard 
deviation of the residuals, is reported in the text box at bottom-left of the 
Optimize parameters screen (Figure 9b). It should be noted, however, that the 
Lilliefors test is fairly strict, and will frequently assess the residuals to be non-
normally distributed because of an overabundance of small (i.e., near-zero) 
values.  In this event, it is helpful to visualize the distribution of residuals by 

selecting the Assess goodness-of-fit icon  on the secondary toolbar. The 
bottom-right panel in this screen (Figure 10d) shows a Normal probability plot 
produced using the MATLAB normplot command. If the residuals are normally 
distributed, the plotted points should lie approximately on a straight line. An 
overabundance of small residuals will produce a sigmoid shape centered about 
zero. The near-zero residuals can be re-weighted by adjusting their associated 
measurement errors to improve the normality of the distribution. However, one 
should become especially concerned if the distribution is skewed to one side or 
if there are extreme outliers. This can indicate a more severe problem with the 
data regression.  
 
The Assess goodness-of-fit screen also shows a table of all fitted measurements 
(Figure 10a), which includes the squared residual ‘SRES’ and ‘Contribution’ 
associated with each measurement.  The ‘Contribution’ column contains the sum 
of all elements of the contribution matrix associated with a given measurement. 
The higher the ‘Contribution’ value, the more important the measurement is for 
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determining the fitted parameters (see Antoniewicz et al. [12] for further 
details). Selecting any of the entries in the Measurements panel will produce a 
plot (Figure 10c) comparing the simulated measurements to the experimentally 
determined values. This provides a convenient way to visually inspect the lack-
of-fit associated with each measurement. The Goodness-of-fit panel (Figure 10b) 
displays detailed information about the residuals associated with the currently 
selected measurement. This table can be used to further pinpoint individual 
measurements that are responsible for a poorly fitted model. The experimentally 
determined ‘Raw Data’ are listed along with the model-fitted values for each data 
point. The squared residual ‘SRES’, the weighted residual ‘WRES’, and the total 
‘Contribution’ associated with each data point are also shown.  
 

 
Figure 10. Assess goodness-of-fit screen (example shown is based on a transient 
isotopomer model). 
 
If the flux estimation provides a poor fit, further investigation is needed to 
discover the root cause of the discrepancy. The Assess goodness-of-fit screen is 
designed to help the user quickly locate measurements that are responsible for 
the overall lack of fit and to diagnose the source of any mismatch between 
simulated and experimental measurements. In general, there are three possible 
causes for a poor fit that should be evaluated: (1) presence of gross 
measurement errors, (2) inappropriate weighting of the residuals, or (3) an 
error or omission in the metabolic reaction network. Process of elimination 
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should be used to determine the root cause of a poor fit, and then corrective 
steps should be taken to obtain an acceptable fit before further analysis is 
performed. 

9.3. Assessing parameter uncertainties 
 

Not all flux parameters can be estimated with equal precision when solving the 
inverse problem by least-squares regression. Therefore, it is imperative to 
calculate confidence intervals or standard errors that convey the uncertainties 
associated with all estimated parameters. The standard errors displayed in the 
‘StdErr’ column of the Optimize parameters screen (Figure 9a) are merely local 
estimates of uncertainty obtained from the diagonal elements of the parameter 
covariance matrix [12]. These values do not account for the presence of 
nonlinearities or inequality constraints in the parameter regression. To obtain a 
more accurate picture of parameter uncertainties, it is necessary to perform 
either Parameter Continuation or Monte Carlo Analysis using the appropriate 
buttons in Figure 9b. Once either of these calculations is completed, the entries 
in the ‘LB’ and ‘UB’ columns will be updated to show the computed lower and 
upper bounds of the 95% confidence interval for each fitted parameter. (The 
confidence level can be adjusted from the default =0.05 to any other value by 
selecting OptionsConfidence interval parameters and editing the 
‘Confidence level’ entry in the dialog box that appears.) Selecting any parameter 
in the table will show a plot of the confidence region in the panel at the lower-
right of the screen (Figure 9c). 
 
Parameter Continuation is more efficient that Monte Carlo Analysis for 
typical models. This calculation involves varying each adjustable parameter, one-
at-a-time, to determine the sensitivity of the minimized SSR value  to the 
parameter in question [12]. In many cases, it is also desirable to calculate 
confidence intervals with respect to a “derived” parameter i ik  L p (e.g., a net 

or exchange flux) that can be expressed as a linear combination of the “free” 
parameters contained in p using the transformation matrix Li. Each parameter is 
varied upward or downward until a threshold  value is reached that 
corresponds to a chi-square distribution with one DOF, evaluated at a 

cumulative probability of 1e.g., the  threshold is given by 2

0.95(1) 3.84   

when =0.05). The interval over which the parameter can be varied while 
staying below this  threshold defines the desired confidence region.  
 
Parameter continuation is performed using a predictor-corrector method that is 
loosely based on the path following algorithm described by Seydel [21] (Chapter 
4). The predictor step involves moving along a vector p in parameter space that 
will produce a desired change in  (let’s call it pred) by varying the parameter 
of interest ki. However, the gradient of  with respect to all other parameters (or 
combinations of parameters orthogonal to the row vector Li) should be held at 
zero to maintain optimality with respect to those other dimensions. Therefore, 



 43 

the step p should be chosen such that the change in the objective function 

gradient Δg = H Δp is parallel to
i

T
L . If there are no active inequality constraints 

and H is invertible, the predictor step direction can be calculated as
i -1 T

Δp H L . 

In the more general case that allows for active constraints and near-singular H 
matrices , the procedure of Section 9.1 can be followed to compute

   -1
Δp Z G f , where Z is a matrix whose columns span the null space of the 

active inequality constraints,     T
G Z H I Z  is the projected “damped” 

Hessian matrix, and f is the projected coefficient vector 
iT T

Z L . Once the step 

direction has been computed, the step length is adjusted to achieve the desired 
value of pred. This is accomplished using an approach similar to Antoniewicz 
et al. [12], which involves solving a quadratic equation for the step length h such 
that  
 

2

pred 1 2

1 2where 2  and 

a h a h
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The value of pred is controlled by specifying the ‘Desired number of 
continuation steps’ within the dialog box that appears after selecting 
OptionsConfidence interval parameters. With a  threshold value of

2

1 (1) 
, the pred on each step should be approximately 2

1 (1) n 
to complete 

the continuation in n steps. The default value of n is 5, but this can be adjusted up 
or down to achieve smaller or larger steps, respectively.  
 
Once the predictor step direction and step size have been computed, the 
continuation algorithm will calculate the actual objective function change 
actual after adding h Δp to the previous parameter vector. The predictor error 

is computed as the difference
pred actual predE    . If the relative predictor 

error 
pred pred predE    is larger than a specified tolerance max, the step is 

rejected and a new step will be computed by increasing the damping parameter 
and recalculating p and h. The relative error tolerance max has a default value 
of one, which can be adjusted by selecting OptionsConfidence interval 
parameters and specifying a new value for ‘Predictor step relative error 
tolerance’ in the dialog box that appears. 
 
If the value of |Epred| is very small (e.g., 10-5), it is likely that the predictor step 
gave an accurate estimate of the optimal  and no further correction is 
necessary. However, if Epred is nontrivial but still less than max pred  , a 

corrector step will be used to minimize  while holding i ik  L p constant at its 

current value. This is accomplished using the same Levenberg-Marquardt 
algorithm described in Section 9.1, but with an additional equality constraint to 
hold ki fixed. Inclusion of the corrector step allows for larger steps to be taken at 



 44 

each iteration of the algorithm, because errors introduced by the predictor step 
can be subsequently removed. This is in contrast with the algorithm of 
Antoniewicz et al. [12], which does not have a corrector step and therefore must 
adjust the step size at each iteration to keep |Epred| at a low value of 
approximately 10-4. Once the corrector step has completed, the predictor-

corrector iterations will continue until the  threshold of 2

1 (1) 
is achieved. In 

this way, the continuation algorithm will systematically trace out the envelope of 
minimized  values as a function of the parameter ki, in order to determine its 
confidence interval bounds.  
 
When the Parameter Continuation button is clicked, confidence intervals will 
be calculated for all parameters that have a check in their ‘Vary’ column of Figure 
9a. Confidence intervals can be computed for a subset of parameters by 
unchecking some of these boxes. (All visible parameters can be checked or 
unchecked as a group by toggling the Vary all button.) The algorithm first 
searches for fully coupled parameters to avoid unnecessary calculations. Then, a 
single parameter continuation job will be performed for each fully coupled set. If 
INCA has been configured to run within a distributed computing environment, 
each continuation will be performed as a parallel job (see Section 2 and 
Appendix E for details). A progress bar will appear to show the fraction of jobs 
that have completed, and its Cancel button can be used to terminate the 
continuation procedure manually.  
 
The progress of each parameter continuation is printed to the MATLAB 
command window (unless redirected to a file). The displayed variables are: the 
iteration counter ‘Iteration’, the total change in SSR value ‘Delta residual’, the 
total change in parameter value ‘Delta parameter’, the change in parameter 
value on the current step ‘Step-size’, the ‘Predictor error’ Epred, the improvement 
in SSR obtained during the corrector step ‘Corrector adjustment’, the number of 
Levenberg-Marquardt ‘Corrector iterations’ performed during each iteration, the 
number of failed predictor steps ‘Failed steps’, the ratio of the actual step taken 
to the optimal h value obtained from the predictor calculation ‘h/hopt’ (Note: 
this will be 1 whenever the predictor step hits a constraint), and the damping 
parameter value ‘Lambda’ used in the predictor step. 
 
Once all the parameter continuation jobs have completed, control will return to 
the INCA GUI window and the ‘LB’ and ‘UB’ columns will be updated with the 
confidence interval bounds. If an improved optimal solution was encountered 
during the parameter continuation, a dialog box will appear that will prompt the 
user to save the alternative flux map. This can occur if the prior Flux Estimation 
procedure did not achieve a global best-fit solution.  
 
Selecting any parameter in Figure 9a will show a sensitivity plot in the lower-
right panel marked Confidence interval plot (Figure 9c). The dashed line 
represents the local approximation of  based on the parameter covariance 
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matrix evaluated at the optimal solution.  The blue line represents the accurate 
 values determined by parameter continuation. Small sensitivities (i.e., small 
changes in the minimized SSR in response to large changes in a parameter value) 
indicate that the parameter cannot be estimated precisely. On the other hand, 
large sensitivities indicate that the flux is well determined, as indicated by a 
steep curve. Fixed parameters show a straight vertical line in the confidence 
interval plot, since these parameters cannot vary. A horizontal dotted line shows 
the  threshold that was used to determine the confidence interval bounds 
(i.e., where the blue line crosses the dotted line). 
 
Any parameters whose confidence interval calculation did not complete 
normally will have an upper bound or lower bound of ‘NaN’. Selecting these 
parameters for plotting in Figure 9c will reveal the progress of the continuation 
prior to termination. In some cases, it will be clear that the parameter in 
question is practically unidentifiable based on the confidence interval plot. In 
other cases, it may be necessary to repeat the confidence interval calculation 
after adjusting the settings in OptionsConfidence interval parameters to 
improve convergence. In particular, increasing the ‘Predictor step relative error 
tolerance’ is sometimes necessary if the command window outputs indicate that 
slow progress was caused by too many failed predictor steps. In preparation for 
this, the program will automatically uncheck the ‘Vary’ box for any parameter 
whose confidence interval calculation completed successfully, but will leave this 
box checked for all parameters that still contain ‘NaN’ values in their ‘LB’ or ‘UB’ 
columns. 
 
INCA is also capable of computing confidence intervals using Monte Carlo 
analysis, as an alternative to parameter continuation. Pressing the Monte Carlo 
Analysis button in Figure 9b will launch a series of Monte Carlo simulations 
using the approach described by Press et al. [22] (Chapter 15.6). The optimal 
parameter vector is used to generate many synthetic data sets, which are then 
used to re-estimate the model parameters. This involves simulating values for all 
measurements assuming that the optimal fitted parameters are “true”. Then, by 
adding Gaussian noise to each simulated measurement based on their 
experimental error, the program will generate many replicate data sets. Re-
fitting fluxes to each data set provides a probability distribution for each 
parameter that can be used to compute confidence intervals based on the spread 
of the distribution. This can be a computationally demanding approach, since the 
program must continue generating new synthetic data sets and re-fitting until 
the chosen uncertainty measure stabilizes. Therefore, many rounds of Monte 
Carlo analysis are required before the “tail” probabilities of interest finally 
converge.  
 
Convergence is monitored by performing Monte Carlo runs in incremental 
batches of 100 synthetic data sets and recalculating the confidence intervals 
after each batch. The calculation continues until the maximum relative change in 
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any confidence interval bound is less than 5×10-4 for three consecutive batches. 
This implies that the confidence interval bounds are correct to three significant 
figures. The ‘Error Norm’ at each iteration can be tracked from the MATLAB 
command window. Also, a progress bar will show the fraction of the next batch 
that has already completed. Pressing the Cancel button on this progress bar will 
terminate the Monte Carlo analysis early. If INCA has been configured to run 
within a distributed computing environment, each data set within a given batch 
will be regressed as a parallel job (see Section 2 and Appendix E for details). 
 
Once convergence is achieved, control will return to the INCA GUI window and 
the values in ‘LB’ and ‘UB’ will be updated with the Monte Carlo results. Note 
that any prior results in these columns will be overwritten. Because Monte Carlo 
is able to compute confidence intervals on all parameters simultaneously, every 
parameter will be updated regardless of whether its ‘Vary’ box is checked. If 
Monte Carlo results are available, selecting a given parameter will show a 
frequency histogram of the values obtained during the analysis, with vertical 
dotted lines denoting the estimated lower and upper confidence interval bounds.  

9.4. Identifiability analysis 
 

After the flux estimation completes, the local sensitivity information (e.g., 
Hessian, Jacobian, etc.) available at the best-fit solution is used by INCA to 
generate the identifiability matrices described in Section 8.3. These can be 

viewed interactively by clicking the  icon on the secondary toolbar (see 
Section 8.3 for details). Inspection of the identifiability results can provide useful 
insights into the flux estimation procedure, as discussed by Antoniewicz et al. 
[12].  
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10.  Tracer Optimization 
 

The Tracer optimization feature applies the method of Mollney et al. [15] to 
search for tracer combinations that minimize either the A- or D-optimality 
criterion. Note that this feature was added to the program recently, and it should 
be treated as “experimental” until more extensive testing has been completed.  
 

Selecting the  icon from the primary toolbar will display the Tracer 
optimization screen (Figure 11). In the upper-left panel (Figure 11a), the drop-
down menu can be used to switch between tables where flux and node 
properties are displayed for editing. As described in Section 8.1, the Value and 
Fixed columns in the Edit flux parameters table and the Balanced column in 
the Edit node parameters table can be edited to set the base values of these 
network properties. The Edit node parameters table can also be used to enter 
initial Pool size estimates when performing transient isotopomer simulations 
(INST-MFA only).  
 

 
Figure 11. Tracer optimization screen. 

 
All previously entered tracers within the Active experiments on the Edit 
experiments screen will be listed in the Optimization results panel (Figure 
11b) at the upper-right of the Tracer optimization screen, along with the initial 
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Enrichment values entered previously (see Section 6.4). If multiple experiments 
are activated, the tracers associated with each parallel experiment will populate 
the table as separate row entries. The initial values in the Enrichment column 
can be edited directly on the Tracer optimization screen, but note that any 
changes will also propagate to the Edit experiments screen. Checking the Fixed 
box for any listed tracer will hold its enrichment constant during the 
optimization, so that its enrichment will not be adjusted away from the initial 
value shown in the table.  
 
Once the initial values in Figures 11a and 11b have been set, clicking the Run 
button will launch the optimization search. The program applies a custom 
Nelder-Mead simplex algorithm called amoeba, which is based on MATLAB’s 
built-in fminsearch function, to minimize the specified A- or D-optimality 
criterion.  The progress of the computation is displayed to the MATLAB 
command window: the iteration counter ‘Iteration’, the number of objective 
function evaluations ‘Func-count’, the minimum objective function value in the 
current simplex ‘min f(x)’, and the ‘Procedure’ used to update the simplex are 
output to the screen at the end of each iteration. A progress bar is also shown 
that indicates the fractional convergence of the algorithm based on its default 
termination tolerances: all enrichments must converge to within 1% (absolute) 
and the objective function value must converge to within 0.1% (relative). 
Pressing the Cancel button on the progress bar at any time will terminate the 
search immediately.  
 
Several options can be adjusted to control the Tracer optimization search. 
Selecting OptionsExperiment design parameters will display a dialog box 
where the user can specify the optimality criterion (A or D) to be used in the 
search. The A-optimality criterion will minimize the trace of the covariance 
matrix, whereas the D-optimality criterion will minimize its determinant. (The 

objective function values are computed by 1 trace( )
n

C in the case of A-optimality 

and 2 det( )n C in the case of D-optimality, where C is the parameter covariance 

matrix and n is the number of parameters included in C.) The parameters 
included in the covariance matrix C can be chosen interactively using the 
checkboxes in the Optimize column of Figure 11a. This is equivalent to applying 
an AL- or DL-criterion with the transformation matrix L chosen to exclusively 
select the checked parameters.  In the case of a steady-state isotopomer model, 
only flux parameters can be optimized, whereas both fluxes and pool sizes can 
be optimized in the case of a transient model. When the Tracer optimization 
screen is first displayed, only the “free” model parameters are initially selected 
in the Optimize column (i.e., independent parameters that are not fixed by the 
user or determined by other parameters due to mass balance constraints). For 
convenience, there is an Optimize all button that enables the user to cycle 
between three default states: (i) all parameters selected, (ii) no parameters 
selected, or (iii) only free parameters selected. 
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The dialog box that appears after selecting OptionsExperiment design 
parameters also allows the user to specify whether to reinitialize the starting 
guess. If ‘Y’ is entered, the program will initialize the starting simplex such that 
each vertex corresponds to a pure tracer at its maximum enrichment, plus one 
additional vertex at the origin with all zero enrichments. This will begin the 
search using the largest possible simplex. On the other hand, entering ‘N’ will 
initialize the starting simplex to include the combination shown in Figure 11b, 
plus other nearby points (10% maximum deviation in each component). This 
will perform a local search starting from the previously entered enrichment 
values. 
 
When the search terminates, a status message will be printed to the MATLAB 
command line and control will return to the INCA GUI window. The optimal 
enrichment values identified during the search will overwrite the previous 
values listed in the Enrichment column of the Optimization results panel 
(Figure 11b). Also, the progress of the search will be displayed to the figure 
window at the bottom of the screen (Figure 11c). The plot will show the optimal 
tracer combination (colored areas) as well as the relative objective function 
value (dotted line) encountered at each iteration. It is very important to note 
that all previously entered tracer enrichments for the active experiments will be 
overwritten when the search terminates, so make sure that you have saved the 
model file before attempting to perform Tracer optimization. Once a new tracer 
combination has been identified, it can be subjected to more rigorous testing by 
performing Tracer simulation to generate simulated labeling data, followed by 
parameter estimation, confidence interval calculation, and identifiability analysis 
of the simulated dataset within the Flux estimation screen (see Sections 8 and 
9).  
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Appendix 

Appendix A: Directory tree
dirtree.pdf

  
 
The INCA program files are arranged as shown in the attached tree diagram. The 
startup files are located in the INCA root directory, and the remaining files are 
grouped into subdirectories as follows: 

 cast: Functions for converting one object into another or transferring data 
between objects. 

 class: Class definitions and methods. 
 core: Core computational routines used to solve steady-state and transient 

EMU balance equations. 
 driver: High-level driver functions for tracer simulation, flux estimation, 

parameter continuation, Monte Carlo analysis, and optimal experiment 
design.  

 fluxtools: Helper functions for analyzing steady-state flux balances. 
 gui: Functions that control the graphical user interface (GUI). 
 idtools: Helper functions for parameter optimization, continuation, and 

identifiability analysis. 
 mstools: Helper functions for processing, correcting, and simulating mass 

isotopomer distributions. 
 parallel: Functions that enable parallel processing features. 
 util: Low-level utility functions. 
 vis: Plotting and data visualization functions. 

 
In addition to these program files, INCA program documentation (including this 
user manual) is located in the ‘doc’ folder. Several example files can be found in the 
‘demo’ folder (see Appendix F for details). 

Appendix B: Class diagrams 
 
INCA data objects can be created from the command line using the class constructor 
methods in the ‘class’ subdirectory. Alternatively, INCA data objects can be loaded 
from a previously saved ‘.mat’ file generated by the GUI. Each INCA object contains 
several property fields, comprised of either built-in MATLAB data types or other 
INCA data objects defined within the ‘class’ subdirectory. There are three top-level 
objects used by INCA to store program data, which are described further below. The 
attached diagrams show the tree structure of each top-level class. (The name of each 
property field is given with its class name in brackets. INCA objects are shown in 
boxes, and built-in MATLAB data types are unboxed.) 
 

model
 ‘model’ objects contain all information needed to define a single network 

model, as well as its associated experimental datasets. 
 

dirtree.pdf
model.pdf
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simdata.pdf
 ‘simdata’ objects contain the results of a tracer simulation. 

 

fitdata.pdf
’fitdata’ objects contain the results of a flux estimation (i.e., a flux map). 

Appendix C: Function index 
 
All INCA functions can be called from the MATLAB command line, using the 
previously described data objects and/or built-in MATLAB data types as inputs and 
outputs. Typing ‘help’ followed by the function name at the command prompt will 
return detailed function documentation. Furthermore, an HTML index is provided 
with function descriptions and cross-references. It can be accessed through the link 
above or by locating index.html within the ‘doc’ folder and opening it within a web 
browser. (Hint: Start by inspecting the functions contained in the ‘driver’ folder, as 
they operate directly on the data objects described in Appendix B and can be used to 
perform several high-level INCA computations directly from the MATLAB command 
line.) 

Appendix D: Handling compartmentalized pools and dilution fluxes 
 
A common issue that arises when modeling isotope tracer experiments is that a cell 
or tissue sample can contain multiple pools of the same metabolite that differ in 
their isotopic labeling. When the pools are extracted from the sample for 
measurement, they will become aggregated. As a result, the isotopomer 
measurements will reflect the labeling of the mixed pool, rather than the separate 
contributions from individual compartments. In order to correctly describe these 
measurements, we need to introduce “pseudofluxes” into our network model to 
account for pool mixing. For example, 
 
Let A.c = cytoplasmic pool 
Let A.m = mitochondrial pool 
Let A.s = sampled pool (mixture of A.c and A.m) 
Let Sink = an arbitrary network sink node 
 
We can include the following pseudofluxes to represent mixing of the two 
compartmentalized pools: 
 
0*A.c (abc…) -> A.s (abc…) 
0*A.p (abc…) -> A.s (abc…) 
A.s -> Sink 
 
The zero coefficients on ‘A.c’ and ‘A.p’ ensure that the pseudofluxes do not impact 
the mass balances and therefore will not alter the “true” fluxes in the biochemical 
network. This is important because the pseudofluxes do not exist in vivo but only 
arise due to sampling of the system. In essence, we are creating the sampled pool 

simdata.pdf
fitdata.pdf
index.html
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‘A.s’ out of “thin air” in each of the first two reactions, but with a labeling pattern 
that matches ‘A.c’ in the first reaction or ‘A.m’ in the second reaction. By adjusting 
the relative contributions of these two reactions, the program will attempt to match 
the labeling measurements on ‘A.s’. Therefore, when entering MS measurements for 
metabolite ‘A’ on the Edit Experiments screen, we will specify ‘A.s’ as the Node ID.  
 
When including pseudofluxes into our model to account for pool mixing, we are only 
interested in the relative contributions from each compartment. The absolute rates 
are meaningless. Therefore, it is convenient to “fix” the total flux ‘A.s -> Sink’ to a 
value of ‘100’ by selecting the reaction on the Edit reactions screen and editing the 
appropriate entries in the Edit flux properties of selected reactions panel (see 
Section 5.2). In doing so, the fluxes estimated for the first and second reactions will 
represent the percentage contribution of each compartment to the sampled pool.  
 
It is also possible to introduce G dilution parameters into isotopomer models using 
pseudofluxes. These parameters were originally introduced as part of the 
Isotopomer Spectral Analysis (ISA) framework to account for lack of isotopic steady-
state in biosynthetic products derived from condensation reactions [23]. (The so-
called D parameters used by ISA, on the other hand, do not require pseudofluxes 
because they reflect true dilution of the tracer before it enters the system. This type 
of dilution can be modeled simply by including two reactions that produce the 
labeled substrate: one that derives from the tracer and another that derives from an 
unlabeled source.) There have been several examples where G parameters have 
been introduced to account for slowly labeled (i.e., “cold”) pools in MFA models 
[24,25]. This can be accomplished in a manner similar to that described above for 
the case of compartmentalization. 
 
Let A = true pool (labeled node involved in other network reactions) 
Let A.u = cold pool (unlabeled source) 
Let A.s = sampled pool (mixture of A and A.u) 
Let Sink = an arbitrary network sink node 
 
The pseudofluxes represent mixing of the labeled and unlabeled pools of ‘A’: 
 
0*A (abc…) -> A.s (abc…) 
0*A.u (abc…) -> A.s (abc…) 
A.s -> Sink 
 
In this case, it is not necessary to use a zero coefficient for ‘A.u’ because it is not a 
balanced node. However, including it does no harm. Selecting ‘A.s’ as the Node ID of 
all MS measurements involving ‘A’ and fixing the flux of ‘A.s -> Sink’ to ‘1’ will enable 
the model to estimate the fractional contributions from the labeled and unlabeled 
pools of ‘A’. The contribution from the true (labeled) pool is equivalent to the G 
parameter, while the contribution from the cold (unlabeled) pool is 1-G.  
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There is one additional constraint that must be set when mixing or dilutional 
pseudofluxes are introduced to transient isotopomer models. We must set the Pool 
size of ‘A.s’ to ‘0’ on the Edit nodes screen to ensure that the sampled pool is at 
quasi-steady state relative to the compartmentalized pools (INST-MFA only). This 
will force the residence time of the sampled pool to be zero, so that its labeling will 
track its inputs instantaneously. Without this additional constraint, there will be an 
artificial time constant associated with pool mixing that does not have physical 
meaning. 
 
One final type of dilution that can be introduced to the model, which does not 
involve pseudofluxes, can be used to represent cases where there is reversible 
exchange of a labeled metabolite with a large, unlabeled pool but without net flux in 
either direction. For example, this might be used to account for dilution of a free 
amino acid pool due to protein turnover in cases where there is no net synthesis or 
degradation of protein. Unlike the previous case, this represents a true dilution of 
the labeled pool that will propagate through the network to other downstream 
metabolites. The G parameter, on the other hand, will only dilute the isotopomer 
measurements of a single metabolite (e.g., ‘A’ in the previous case) without directly 
impacting the labeling of other metabolites in the network.  
 
We can represent the previous example of amino acid dilution due to protein 
turnover as follows: 
 
Let Ala = free alanine pool (balanced) 
Let Ala.p = protein-bound alanine (unbalanced) 
Let dummy = dummy metabolite not involved in other reactions (balanced) 
 
The dilution flux allows for reversible exchange between Ala and the unlabeled Ala.p 
pool: 
 
Ala (abc…) <-> Ala.p (abc…) + dummy 
 
We will mark Ala.p as unbalanced by unchecking the appropriate box in the 
Balanced column on the Edit nodes screen. This will force Ala.p to remain 
unlabeled but will also result in the net flux of the reaction becoming unconstrained. 
Therefore, we include a balanced ‘dummy’ metabolite to force the net flux to zero. 
Since this reaction is the only one that involves ‘dummy’, its net flux must be zero to 
preserve mass balance. In the more general case where we want to allow both 
reversible exchange AND net flux to/from the unlabeled pool, we can remove the 
dummy variable from the reaction equation. This will provide an additional point 
where material can enter or leave the network, which should typically be associated 
with a net flux measurement. (Otherwise, large uncertainties can result due to 
unconstrained flux to/from the unbalanced node.) 
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Appendix E: Parallelization 
 
INCA has been natively configured to take advantage of distributed computing 
environments by parallelizing certain long-running processes: (i) flux estimation 
(estimate function), (ii) parameter continuation (continuate function), and 
(iii) Monte Carlo analysis (montecarlo function). These functions can be launched 
from the INCA GUI (running on the frontend node) using the Estimate Fluxes, 
Parameter Continuation, and Monte Carlo Analysis buttons found on the 
Optimize parameters screen that first appears when selecting the Flux estimation 

icon  . As described in Section 2, there are two approaches for running parallel 
computations with INCA. The first approach relies on the Condor job scheduler and 
the MATLAB Compiler Runtime (MCR) library to distribute jobs from the frontend 
node to compute nodes. This has been successfully tested within a 32-node Rocks 
6.0 cluster (www.rocksclusters.org) running Condor 6.1 and MATLAB R2012a on 
the frontend node. The second approach relies on the MATLAB Parallel Computing 
toolbox and Distributed Computing Server. 

 
In order to use the first approach, Options Run in parallel using Condor must 
be checked on the main menu of the INCA GUI. Also, the full file location of the 
previously compiled INCA serve function and the previously installed MCR library 
must be specified using the dialog box that appears after selecting Options 
Condor settings. The serve function (found in the INCA ‘parallel’ subdirectory) 
must be compiled on the frontend node using the MATLAB compiler command ‘mcc 
-m -R -nojvm -R -nodisplay -v serve.m’ and placed in a common file location where 
all compute nodes can access it. The MCR library must also be downloaded and 
installed to a location that is accessible by all compute nodes.  
 
Once these files and options have been set, running one of the parallelizable 
functions on the frontend node will generate a batch of input files within the current 
MATLAB working directory named ‘processin_#.mat’, where ‘#’ is a unique number 
associated with each job. The jobs will then be distributed to the compute nodes by 
generating a Condor submit description file called ‘mat.condor’ and submitting it to 
Condor with the command ‘condor_submit’. (Before calling parallel functions, the 
user should change the working directory to a writable location where no other 
INCA parallel sessions are running. Otherwise, crosstalk could occur between the 
sessions. Also, the directory name should not contain spaces or errors will result 
when calling the serve function.)  
 
The jobs will be queued and processed in order of their job number as free compute 
nodes become available. As each job file is processed, a text file named ‘diary_#.txt’ 
will be created to store any command line outputs returned by the compute node 
while running job ‘processin_#.mat’. This file can be opened within a text editor 
while the job is still in process to monitor the progress of the calculation. Upon 
completion, an output file named ‘processout_#.mat’ will be written to the same 
directory where the input files are stored. This file will be read by the frontend node 

http://www.rocksclusters.org/
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and then deleted. A list of completed job numbers will be updated on the frontend 
MATLAB command window as each output file is read. When all output files have 
been read, control will return to the INCA GUI window and the calculation results 
will be available for viewing. Two files called ‘mat.err’ and ‘mat.log’ will also be 
written to the MATLAB working directory that contain error messages and status 
messages, respectively, generated by Condor during the run. Refer to the Condor 
project homepage (http://www.cs.wisc.edu/condor/) for further details about 
Condor program operation and user commands. 
 
The second approach for running parallel computations with INCA involves starting 
a pool of worker processes using the MATLAB Distributed Computing Server and 
Parallel Computing toolbox. The parallelizable functions in INCA have been coded 
with parfor loops, which will automatically distribute jobs to workers when they 
are available. No INCA options or program files need to be adjusted to use this 
approach. However, it has not been tested by the authors and therefore cannot be 
verified to work as expected. Please refer to the Parallel Computing toolbox 
documentation for more information on how to start worker pools and connect to 
them from a MATLAB client.  

Appendix F: Examples 
 
Two subdirectories are provided under the ‘demo’ folder with examples of INCA 
models that can be used to explore program features and syntax. Both examples 
contain a ‘.m’ script file that can be called from the MATLAB command line to 
generate an INCA model object. Alternatively, the model can be loaded from the 
INCA GUI by opening the ‘.mat’ file contained in the same folder.  

 The ‘simple’ folder contains a small steady-state example based on the toy 
network examined by Antoniewicz et al. [1,12]. 

 The ‘ecoli’ folder contains a larger nonstationary example based on the E. 
coli network examined by Young et al. [2]. (Because this model contains 
several data points, it can take up to a minute to load. Please be patient!) 

  

http://www.cs.wisc.edu/condor/
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Copyright Notice 
 
The INCA graphical user interface depends on the findjobj utility function, which is 

subject to the copyright and license terms shown below. 

 
Copyright © 2009, Yair Altman 

All rights reserved. 

 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, 

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
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Changelog 
 
Version 1.0 
Creation date: 2013/9/1 
 
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
Version 1.1 
Creation date: 2014/2/13 
 
Fixed a bug in plotms.m  that produced an occasional error when plotting MS data. 
 
 


